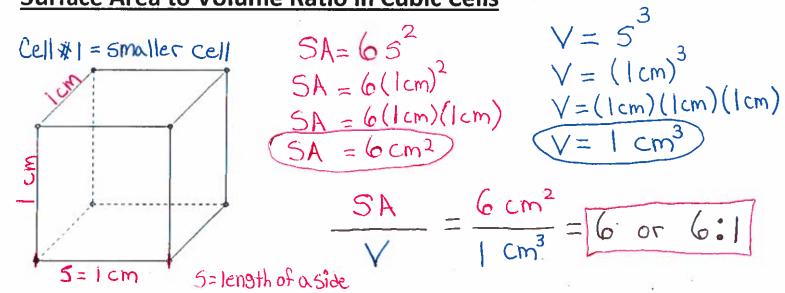
Unit 5 Notes: Cellular Reproduction (Ch. 9 & 10.1) Cells - are the basic unit of life. Average human cell is approximately $50 \mu m$ (micrometers) in diameter. Bacteria & 1 MM 1000 $\mu m = 1 mm (millimeter)$ Most cells are less than 100 µm in diameter, which is smaller than the period at the end of this sentence. Cell reproduction (division) - process that creates more cells Growth an increase in size or mass of a cell or organism. Development - Changes a cell/organism become specialized. Stem Cell-The most efficient cells are <u>Small</u> in size What limits cell size and why are cells small? (1) Transport of substances: To move <u>Nutrients</u> into the cell and <u>Wastes</u> out of the cell faster.

: To communicate more efficiently.

Intercellular communication


(2) Intracellular

Cell Surface Area to Volume Ratio

A cell functions best when it has a high surface area (SA) and $\underline{\alpha}$ low volume (V). \downarrow

Surface Area to Volume Ratio in Cubic Cells

$$SA = 65^{2}$$

 $SA = 6(1cm)^{2}$
 $SA = 6(1cm)(1cm)$
 $SA = 6cm^{2}$

$$V = (1 \text{ cm})$$

$$V = (1 \text{ cm})(1 \text{ cm})(1 \text{ cm})$$

$$V = 1 \text{ cm}^3$$

$$\frac{SA}{V} = \frac{6 \text{ cm}^2}{1 \text{ cm}^3} = \frac{6 \text{ or } 6.11}{1 \text{ cm}^3}$$

Cell
$$#2 = larger cell$$

$$S = 2 cm$$

$$SA = 65^{2}$$
 $V = 5^{3}$
 $SA = 6(2 \text{ cm})^{2}$ $V = (2 \text{ cm})^{3}$
 $SA = 6(2 \text{ cm})(2 \text{ cm})$ $V = (2 \text{ cm})(2 \text{ cm})$

$$SA = 65^{2}$$

 $SA = 6(2 \text{ cm})^{2}$
 $SA = 6(2 \text{ cm})(2 \text{ cm}) = (2 \text{ cm})(2 \text{ cm})(2 \text{ cm})(2 \text{ cm})$

$$SA = 24 \text{ cm}^2$$

$$\frac{5A}{V} = \frac{24 \text{ cm}^2}{8 \text{ cm}^3} = 3 \cdot \text{or } 3:1$$

As a cell increases in size, the _______ increases at a much faster rate than the <u>Surface area</u>

Conclusion * Larger 5A makes for a more efficient cell, so cell *1 the amallor cell : hother than cell & the larger cell.

What does a cell do when it becor	mes too large?
-----------------------------------	----------------

1. The cell <u>5tops</u> growing

2. The cell <u>divides</u>

3. The cell <u>dies</u>.

Two Types of Cell Reproduction (Cell Division):

1. Mi+05i5 - reproduction of body cells (Somatic cells)

- Parent cell: 1 diploid (2n) body cell

- Daughter cells: 2 genetically identical diploid (2n) body cells

Examples: red blood cell, white blood cell, nerve cell, skeletal muscle cell, cardiac muscle cell, fat cell, epithelial skin cell.

2. Meiosis - formation of sex cells (9ametes)

- Parent cell: 1 diploid (2n) body cell

- Daughter cells: 4 different haploid (n) Sex cells

males

females

Examples: Gametes (sex cells) = sperm cell and egg cell

1

Cell Cycle = process of cellular reproduction in 3 main parts

3 Main Parts:

- (1) $\underline{Interphase} = 1^{st}$ stage of the cell cycle in which the cell grows, matures, and replicates its DNA and cell structures.
- growing stage in which a cell spends most of its life
 - G₁ (Growth 1) cell grows in size; organelles double in #
 - S (Synthesis) DNA replication occurs in nucleus of cell
 - G₂ (Growth 2) cell continues to grow in size in preparation for cell division
- (2) $\frac{Mi+05i5}{}$ or $\frac{Mei05i5}{}$ =2nd stage of the cell cycle in which the cell's nuclear material divides and moves to opposite ends of the cell.

Mitosis (1 division): | cell → 2cells Meiosis (2 divisions): | cell → 2cells → 4cel · Prophase I Prophase · Metaphase I · Metaphase · Anaphase I · Anaphase · TeloPhase I · Telophase · Prophase II Events Similar · MetaPhaseII · Anathase II Stages of

(3) $\frac{CytoKinesis}{CytoP/asm}$ = 3rd stage of the cell cycle in which the cell's $\frac{CytoP/asm}{CytoP/asm}$ divides creating new cells.

· TeloPhase II

Mitosis