Unit 3 Notes: Ch. 7.1 Cell Discovery and Cell Theory

Scientists who Contributed:

Robert Hooke	Anton	Matthias	Theodor	Rudolf
	Van	Schleiden	Schwann	Virchow
	Leeuwenhoek			

Cell Theory:

1.

2.

3.

Microscopes:

Туре	Components/how it works	Maximum Magnification	Disadvantages
Compound Light			
Transmission Electron			
Scanning Electron			
Scanning Tunneling Electron			

Basic Cell Types:

	PROKARYOTE	EUKARYOTE
Nucleus		
Genetic Material (DNA)		
Organelles		
Cell Membrane		
Cytoplasm		
Examples		

Unit 3 Cells Notes: Ch. 7.2 Plasma Membrane

The plasma membrane is	also called the	·
It is found in	and	cells.
Plasma Membrane Main	Function (Job):	

	Outside the cell
Oxys Water	Glucose Wastes Wastes Carbon dioxide
The plasma membrane allows	in such as
and out s	uch as
It is a membra wastes out based on the principle	ne that regulates the flow of nutrients in and of
The function of the plasma memb	rane is important to maintaining
	for the cell and the living organism.
Because the plasma membrane ha	is a distinct pattern/arrangement and its
phospholipid molecules are free to	o move throughout the membrane, it is said to
be a	model.

Plasma Membrane Structure (Label the parts and describe the functions of these parts)

Forms the double layer of the plasma membrane and acts as a barrier between the cell and its environment = _____

Identify signals and is important in cell identification/communication =

Provides a pathway for large substances to enter and exit the cell, which otherwise could not pass through the plasma membrane = _____

Prevents fatty acid tails of phospholipids from sticking together, helping the plasma membrane to maintain its shape = _____

Notes: Cell Structures/Organelles & Cellular Transport

Ch. 7.3 Animal and Plant Cell Structures/Organelles

Plant and animal cells are both examples of ______ cells.

Label the Animal Cell Structures/Organelles

Animal Cell Structures/Organelles Answer Key

Label the Plant Cell Structures/Organelles

Plant Cell Structures/Organelles Answer Key

Compare and contrast between prokaryotic and eukaryotic cells. Identify an example of each type of cell.

Prokaryotic	Both	Eukaryotic
•	•	•
•	•	•
•	•	•
•	•	•
Example		Example

Compare and contrast plant and animal cells.

Plant	Both	Animal
•	•	•
•		•
·	•	•
•	•	•
•	•	•

Ch. 7.4 Cellular Transport

Cellular transport –			
Two Types of Cellular Tra	nsport:		
1	movement of particles across		
plasma (cell) membrane	•		
Examples of Passive Trans	port (no energy required):		
a. Diffusion			
	•		
Factors that affect the rate	e of diffusion:		

When diffusion of substances into the cell = diffusion of substances out of the cell (no net movement of particles), the system is at ______.

•

c. ______ - diffusion of water across a plasma (cell) membrane.

2._____ - movement of particles across

plasma (cell) membrane_____.

Examples of Active Transport (requires energy):

a. Sodium (Na⁺)/Potassium (K⁺) ATPase Pump

Found in the ______ of _____ cells.

Exchanges 2 _____ into the cell for 3 _____ out of cell.

c. Exocytosis - _____

Compare and contrast passive and active transport? Provide an example of each type of transport in your response.

Both	Active Transport
•	•
•	•
	Example
	• •

How do cells react in 3 types of solutions?

1. Isotonic Solution

Iso- means

 solution in which water and other substances diffuse into and out of the cell at an ______ rate (equilibrium, no net movement of water).

RESULT: The cell size _____

2. *Hypo*tonic Solution *Hypo- means*_____

- solution where there is more water outside the cell than solute, water moves ______ the cell causing the cell to swell or burst.

RESULT: The cell size ______.

3. *Hyper*tonic Solution *Hyper- means*_____

- solution where there is less water outside the cell than solute,

water moves ______ of the cell causing it to shrink.

RESULT: The cell size ______.