Biology Unit 2 Chemistry of Life (Ch. 6) Guided Notes

Atoms, Elements, and Chemical Bonding

- I can draw atom models and identify the # protons, # neutrons, and # electrons in an atom.
- I can identify the 6 most common elements that make up living things.
- I can differentiate between ionic and covalent bonds.

	are the building blocks of matter.	 	
are made of matter.			
Atom =		 	
Element =			
		 	•

Structure of an ATOM

<u>3 Parts:</u>

- 1. Protons = ______ charge and located in the ______ of an atom.
- 2. Neutrons = _____ charge (neutral) and located in the ______ of an atom.
- 3. Electrons = _____ charge and located in the _____ of an atom. 1st energy level can hold a maximum of _____ electrons 2nd energy level can hold a maximum of _____ electrons

3rd energy level can hold a maximum of ______ electrons

The periodic table identifies the atomic number and atomic mass of an element.

Mass number = atomic mass rounded to nearest whole number

The periodic table is arranged in order of increasing ______.

The vertical columns of the periodic table are called ______.

The horizontal rows of the periodic table are called______.

To calculate how many protons, electrons, and neutrons an atom or given element has use the following:

Atomic Number = # of Protons = # Electrons Atoms are NEUTRAL/have NO CHARGE; therefore # Protons = # Electrons # Neutrons = Atomic Mass (rounded) – Atomic Number

For each element identify the # Protons, # Electrons, # Neutrons, Atomic #, and Atomic Mass (Mass Number). Then, draw and label the atom.

Lithium	Carbon	Oxygen

Fill in the diagram and chart below.

	electron	energy level	neutron	nucleus	proton
			\frown		
				e [−] 3.	
1.			p+		
2		H		4.	
				5.	

Statement	Electron	Neutron	Proton
Positively charged particle			
Located outside the nucleus			
Can be shared by two atoms			
Has no charge (neutral)			

Notice the type of notation used for atoms:

 $^{A}_{Z}X$

X = chemical symbol of the element Z = "atomic number" A = "mass number"

 ${}^{12}_{6}$ C, ${}^{13}_{6}$ C, and ${}^{14}_{6}$ C are notations that represent <u>isotopes</u> of carbon atoms.

 ${}^{1}_{1}H$, ${}^{2}_{1}H$ and ${}^{3}_{1}H$ are notations that represent <u>isotopes</u> of hydrogen atoms.

Note the following symbols: (they are not to scale)

O = proton (positive charge)
● = electron (negative charge)
③ = neutron (no charge)

The following three diagrams are carbon atoms:

The following three diagrams are hydrogen atoms:

List the	most common	elements	found	in	living th	ings.
----------	-------------	----------	-------	----	-----------	-------

C H N O P S	C H Carbon Hydroger	Nitrogen O	O P Phosphoru kygen	S Sulfur
Why do atoms bond together?				
Atoms bond together to fill their valen When atoms bond together they form	ce (outer) electro	ns to becom and	ie	
Compound =				
Molecule =				
TYPES OF BONDING				
1 bonding is w form molecules. Example: Wa	when two or more ter (H_2O)	atoms	ele	ectrons to
	Covalent Bo	ond		
	Oxygen atom			
Hydrogen atom		Hydrogen		
electrons	prog	electron	S	

Water molecule

2. _____ bonding is the attractive force between two ions of opposite charge to form compounds. Example: NaCl (table salt)

negatively charged when it The atomic mass unit (amu) is a special unit for measuring the mass of very small particles such as atoms. The relationship between amu and grams is the following: $1.00 \text{ amu} = 1.66 \text{ x } 10^{-24} \text{ g}$. Note the following diagrams comparing atoms and ions.

How many protons, neutrons, and electrons does the Fluorine ATOM have?

What is different in the Fluorine ION?

How many protons, neutrons, and electrons does the Magnesium ATOM have?

What is different in the Magnesium ION?

Chemical Reactions & Enzymes

- I can differentiate between reactants and products in a chemical reaction.
- I can summarize the functions of enzymes.
- I can create a model showing how enzymes function.
- I can explain how pH, temperature, and other substances affect enzyme function.

Physical change = a change in which the physical form (______ or

_____) of a substance is changed, but not what it is made of.

Ex. Water changing states from solid (ice) to liquid to gas (vapor), cutting paper, painting a house

Chemical change = a change in which a substance is converted into a ______ substance with ______ composition and properties.

- Involves chemical reactions that break the _____
 - of ______ to rearrange and make new ______

Ex. Photosynthesis, cellular respiration, combustion of methane (natural gas)

PHOTOSYNTHESIS CHEMICAL REACTION

Chemical Reactions

- ➢ Written as chemical formulas using symbols.
- Atoms from the reactants (left side of arrow) are the atoms that form the products (right side of arrow).
- Subscripts (numbers below and to right of symbol) identify how many of that atom are in the compound/molecule.
- Coefficients (numbers in front of compound/molecule) identify the number of that compound/molecule.
- Reactions must be balanced to show conservation of matter.
- NEVER CHANGE SUBSCRIPTS WHEN BALANCING CHEMICAL REACTIONS! ONLY CHANGE THE COEFFICIENTS TO BALANCE CHEMICAL REACTIONS!
- An arrow shows the reaction (breaking and making of chemical bonds).
- Activation energy is needed for reactants to become products.
- Reactions are either endothermic (absorb energy) or exothermic (release energy).

Circle the subscripts and underline the coefficients in the following chemical reaction.

Practice: Add the correct coefficient to balance the chemical equations below.

1. $N_2 + O_2 \rightarrow N_2O$

2.
$$\underline{\qquad} H_2O_2 \rightarrow \underline{\qquad} H_2O + \underline{\qquad} O_2$$

 $3. \underline{\qquad} N_2 + \underline{\qquad} H_2 \rightarrow \underline{\qquad} NH_3$

4. $CH_4 + O_2 \rightarrow CO_2 + H_2O$

5. Sodium (solid) + Chlorine (gas) \rightarrow Sodium Chloride (solid)

Enzymes

that speed up chemical reactions by

 \triangleright activation energy.

- ➢ Biological catalysts ending in -____.
- Involved in ______ (energy needed for all the chemical reactions in your body.
 Are ______ and do not get used up during the chemical reaction.
- Changes to factors such as ______, _____, and ______, affect an enzyme's ability to work.
- When an enzyme changes shape and loses its function, it becomes ______.

Label and briefly describe what is happening at each step in the chemical reaction above.

Label the diagram below.

Draw a dotted line to represent how the chemical reaction would occur with an enzyme. Label the reactants and products on the energy diagram.

Reaction progress

Compare what happens to energy in exothermic and endothermic reactions by completing the diagram below.

Label the type of reaction (exothermic or endothermic) shown by the energy diagrams below and justify your reasoning below the pictures.

Properties of Water, Acids, Bases, & pH

- I can describe the importance of water.
- I can describe the properties of water.
- I can explain why hydrogen bonds form.
- I can describe dehydration synthesis (condensation) and hydrolysis reactions.
- I can differentiate between acids and bases and provide examples of each.

Water is a compound/molecule formed by _____ bonds.

The oxygen atom and hydrogen atoms ______ their valence electrons.

Since ______ is a very electronegative atom, it DOES NOT share the electrons equally with the two hydrogen atoms in a water molecule.

The unequal sharing of electrons results in charged ends (poles) of the molecule.

_____ molecules result when atoms do not share electrons equally between atoms.

Water is a _____ molecule.

Water molecules are attracted to one another and form ______ bonds.

Hydrogen bonding is also known as _____

Circle and count the number of water molecules in the picture to the right. Label the types of bonds that form between the atoms in individual water molecules and between different water molecules.

Properties of Water

solution.

Property		Description	
Polar			
Universal Solvent			
Cohesion			
Adhesion			
High Surface Tension			
High Heat Capacity			
Density			
Water is important in HO = \bigcirc = \bigcirc = \bigcirc HO = \bigcirc = \bigcirc = \bigcirc	of chemical bond	It is involved in Is in macromolecules. $HO = \bigcirc = \bigcirc$ $HO = \bigcirc = \bigcirc$ (b) Hydrohysis	and
(a) Denydration synt	nesis	(b) Hydrolysis	
Acids and Bases			
Water dissociates into		and	ions.
	$H_2 O \ \Leftrightarrow$	$H^+ + OH$	
Acids release		ions or	ions in

Bases release	ions in solution.

14

The pH scale is used to measure the concentration of ______ ions.

The ______ the H^+ concentration, the more ______.

have a low concentration of H⁺ions.

The relationship between H⁺, OH⁻ and pH

	OH-	рH	\mathbf{H}^+	
con	centration(mol/l)		concentration(m	ol/l)
1 x 10 ⁻¹⁴ 1 x 10 ⁻¹³ 1 x 10 ⁻¹²	$\begin{array}{c} 0.0000000000000001\\ 0.000000000000001\\ 0.0000000000$	0 1 2	1 0.1 Increasing 0.01 acidity	${\begin{array}{*{20}c} 1 \ x \ 100 \\ 1 \ x \ 10^{-1} \\ 1 \ x \ 10^{-2} \end{array}}$
$1 \ge 10^{-11}$	0.00000000001	3	0.001	1×10^{-3}
$1 \ge 10^{-10}$	0.0000000001	4		1×10^{-4}
1×10^{-8}	0.000000001	5	0.00001 0.000001 0.0000001	1×10^{-6}
1×10^{-8}	0.00000001	6		1×10^{-6}
1×10^{-7}	0.0000001	7		1×10^{-8}
1 x 10 ⁻⁵	0.00001 0.0001	9	0.000000001	1 x 10 ⁻⁹
1 x 10 ⁻⁴		10	0.00000000001	1 x 10 ⁻¹⁰
1×10^{-3}	0.001	11	0.000000000001	1×10^{-11}
1×10^{-2}	0.01 Increasing	12	0.00000000000001	1×10^{-12}
1×10^{-1}	0.1 basisity	13	0.00000000	1×10^{-13}
1 x 100	1	14	0.00000000000001	$1 \ge 10^{-14}$

Identify examples from the pH diagram below to fill in the table.

Acids	Bases	Neutral
weak	Weak	
strong	strong	

help neutralize acids and bases to maintain a certain pH level. Many organisms need buffers to maintain a certain pH allowing them to maintain

Macromolecules

- I can identify the specific elements in each of the organic macromolecules.
- I can identify examples of the organic macromolecules.
- I can summarize the major functions of each organic macromolecule.
- I can recognize the structural formulas of each organic macromolecule.
- I can describe the individual subunits in each of the organic macromolecules.
- I can predict what would happen to my body if certain organic macromolecules were not available.
- I can describe hydrolysis and dehydration reactions.

Life on earth is	based. =	

Each carbon atom is special because it forms

Carbon joins in ways that it forms large molecules in 3 shapes:

1) Straight chain2) Branched

3) Ring

The six most common elements that make up living things are _____

______ - large molecules formed from smaller molecules (monomers).

<u>4 Major Categories of Organic Macromolecules</u>:

1. 2. 3.	
4 Made by	Broken down by
-OH + HO	\rightarrow $-0 +$ H_2O
-0- H + H ₂ O -	\rightarrow $ -$

(1)	"Sugars and Starches"
Elements:	
<u>Jobs/Functions</u> :	

Examples of Carbohydrates:

Monosaccharides (subunits of carbohydrates) - _____

Disaccharides - _

Polysaccharides - ___

(2)	"Fats, Oils, and Waxes"		
Elements:			
<u>General Structure</u> : Fatty acids – chain of o Glycerol – 3-carbon al Other components – pl	carbon/hydrogen "tails" cohol "backbone" nosphate chain (ATP) or 4-carbon rings (steroids)		
<u>Jobs/Functions</u> : > >			
Types of Lipids: 1. 2. 3.	 chains with phosphate groups (found in cell membrane) lipids like cholesterol and sex hormones (estrogen and testosterone) (fats) – long-term energy storage 		
Three Structures of Fa 1. - No double bond Examples: 2. One double bond	tty Acids: s between carbon atoms in chain [all single bonds (–)] 		
- One double bon Examples: - Two or more do Examples:	uble bonds (=, =) between carbon atoms in carbon chain		
	$\begin{array}{c} H & H & H & H & H & H & H & H & H & H $		

(3)		
Flements.		

General Structure: ______ - subunits held together by ______ bonds. Amino Acid Structure Dipeptide = 2 Amino Acids н н peptide bond acidic amino ·ОН group group Amino Carboxyl Group Group нно н R ОН ⇒ H−N−Ç−C−N-Side Chain H dipeptide amino amino water acid acid Jobs/Functions: ۶ _____

Examples of Proteins:

Levels of Protein Structure:

(4)) "Genetic Information"		
Elements:			
General Structure:			
	subunits of nucleic acids.		
Nucleotides (subunits) are made of 3	parts:		
(1)	Phosphate Group		
(2)			
(3)		Nitrogenous Base	
Jobs/Functions:	Pentose Sugar		
A			

2 Types of Nucleic Acids:

- 1) DNA = _____
- 2) RNA = _____

