How to Balance a Chemical Equation

Reactants \rightarrow Products

Step 1: Translating the word equation. Write a chemical equation from the word equation using the proper symbols for the elements which make up the compounds and molecules found in the equation.

Example:

Magnesium + Oxygen \rightarrow Magnesium Oxide \quad (word equation)
$\ldots _$_ $\mathrm{Mg}+\ldots \mathrm{O}_{2} \rightarrow$ __Mg (chemical equation)
Step 2: Balance the atoms. Fill in each blank with a coefficient (a numerical multiplier of all the atoms in the formula that follows it) to balance each element in the equation.
\checkmark Start with the most complex substance in the equation, the one with the largest number of atoms or different types of atoms.
\checkmark End with the least complex substance, such as an element by itself.
$\underline{1} \mathrm{Mg}+\underline{1 / 2} \mathrm{O}_{2} \rightarrow \underline{1} \mathrm{MgO}$
Step 3: Adjust the coefficients. Fill in each blank with the smallest whole number coefficients that balance the equation. DO NOT CHANGE THE SUBSCRIPTS OR CHEMICAL SYMBOLS FOR THE ELEMENTS!
$\underline{2} M g+\underline{1} O_{2} \rightarrow \underline{2} M g O$
Step 4: Check your work. Check to see that the \# of atoms for each element on the reactant side $(\mathrm{left})=$ the \# of atoms for each element on the product side (right).

2 types of elements in the chemical equation:

1. Magnesium (Mg)
2. Oxygen (O)
$\checkmark 2 \mathrm{Mg}$ atoms on the left side $=2 \mathrm{Mg}$ atoms on the right side
$\checkmark 2 \mathrm{O}$ atoms on the left side $=2 \mathrm{O}$ atoms on the right side

Step 5: Specify the states of matter. The abbreviations used for these states of matter are solid (s), liquid (l), gas (g), and aqueous solution ($a q$).
$\underline{2} M g_{(s)}+\underline{1} O_{2(g)} \rightarrow \underline{2} \mathrm{MgO}_{(s)}$

