Enzyme Kinesthetic Lab Demonstration Activity

Part I

Directions: Fill in the blanks using words from the word bank below.

active site key protein speed
bonds lock reactants (substrates) substrate
catalysts products size/shape

Enzymes, also called biological (1)___________________, are made out of (2)________________. The purpose of an enzyme is to (3)________________ up a chemical reaction. Each enzyme has a(n) (4)________________ where a (5)________________ molecule binds. The (6)________________ of the substrate must match that of the enzyme’s active site. The enzyme-substrate model is similar to a lock and key mechanism. The substrate acts as the (7)________________ and the enzyme acts as the (8)________________. In the enzyme-substrate complex, chemical bonds in the (9)________________ are broken and new chemical (10)________________ are formed. The results of the interaction between an enzyme and its substrate(s) are (11)________________, which are released by the enzyme.

Part II

Directions: Identify the following substances as either an enzyme, substrate, or product.

Lactase + Lactose \(\rightarrow\) Glucose + Galactose

(12)_________________ (13)_________________ (14)_________________ (15)_________________

(16) Draw, label, color, and explain an enzyme/substrate/product(s) picture showing this chemical reaction.
Part III

Directions: Fill in the blank.

(17) What is the name of the substrate(s)/reactant(s) in the Apple Enzyme Lab activity?

(18) What is the name of the browning enzyme in the Apple Enzyme Lab activity?

(19) What is the name of the brown pigment product made when the apple’s soft tissue is exposed to air?

(20) Name three factors which affect an enzyme’s activity or ability to work. #1_____________________, #2_____________________, and #3_____________________.

Part IV

Directions: In your group using your Enzyme Modeling Kit, demonstrate to the instructor how the enzymatic browning process occurs in apples and how inhibitors can slow/stop the browning process. Draw, label, color, and explain an enzyme/substrate/product picture for your demonstration below. Talk it, show it, do it!

Make sure you can demonstrate and explain the process using the following terms: enzyme, catalyst, substrate/reactant, enzyme-substrate complex, product, protein, active site, lock, key, polyphenol oxidase, oxygen gas, melanin, lemon juice, hot water, hot sugar water, competitive inhibitor, pH, temperature, and other substances.

☐ Instructor Signature/Initials: _________________________________ Score:________________