KEY

Unit 3 Cells Notes: Ch. 7.1 Cell Discovery and Cell Theory

Scientists who contributed:

Robert Hooke	Anton	Matthias	Theodor	Rudolf
1/15	Van 1683	Schleiden	Schwann	Virchow
1665	Leeuwenhoek	1838	1838	1855
discovered &	designed and used	Concluded all	Concluded all	Concluded all
named cells	a microscope to	Plants are	animals are	cells come
after looking at	View living organisms		Made of Cells	
Cells in Corkfor	in Pond Water		MUDE OF CENTS	Cells
Kback (Plant cells)	= "animalcules"			
+1///	= Protists			
1-1-11				

Cell Theory (3 parts):

- 1. All living things are made of one or more cells.
- 2. Cells are the basic unit of Structure and organization (basic unit of life).
- 3. Cells come from Pre-existing cells (Pass on genetic material)

Microscopes:

	Type	Components/how it works	Maximum Magnification	Disadvantages	
	Compound Light	lenses & light	1000 X	low magnification & resolution	(blurry)
2	Transmission Electron(TEM)	Magnet beam & electrons → Slice	500,000 X	Only nonliving specimen slices	
3	Scanning Electron (SEM)	Magnet beam & electrons -> Surface	500,000 X	ONLY NONLIVING Specimen Surfaces	
	Scanning Tunneling Electron (5TM)	TI as a second	500,000 X	7 equites Skill and expensive	
				- can see atoms/molecules	

Basic Cell Types:

	small Size	large size	
	PROKARYOTE before	EUKARYOTE True	
Nucleus	No	yes	
Genetic Material (DNA)	Yes, O circular Plasmids	Yes. linear in nucleus \$	
Organelles (cell Parts)	No Only ribosomes	Yes, membrane-bound	
Plasma (Cell) Membrane	Ye5	Yes	
Cytoplasm	.Y e5	Yes	
Examples	Bacteria	Protists, fundi, Plants, Animals	

Unit 3 Cells Notes: Ch. 7.2 Plasma Membrane

The plasma membrane is also called the <u>Cell Membrane</u> .
It is found in <u>Prokaryotic</u> and <u>Eukaryotic</u> cells.
Plasma Membrane Main Function (Job): "Bouncer @ a club" or Anti-Virus Software
To regulate or control which materials enter or exit the cell (boundary layer between cell and its environment)
Outside the cell
Oxygen Glucose Wastes Wastes Carbon dloxide Water Inside
Water Inside dioxide the cell
The plasma membrane allows <u>Nutrients</u> in such as

The plasma membrane allows <u>Nutrients</u> in such as
glucose, Oxygen, and water
and <u>Wastes</u> out such as <u>Carbon dioxide</u> , <u>lactic acid</u> ,
Sodium chloride, Phosphates, Sulfates, & nitrogen-Containing compounds
It is a <u>Semi-Permeable</u> membrane that regulates the flow of nutrients in and
wastes out based on the principle of Molecular Compound Size
The function of the plasma membrane is important to maintaining
homeostasis for the cell and the living organism.
Because the plasma membrane has a distinct pattern/arrangement and its
phospholipid molecules are free to move throughout the membrane, it is said to
be a <u>fluid - mosaic</u> model.

Plasma Membrane Structure (Label the parts and describe the functions of these parts)

